Recent Advances in Nonlinear Dimensionality Reduction, Manifold and Topological Learning

نویسندگان

  • Axel Wismüller
  • Michel Verleysen
  • Michaël Aupetit
  • John Aldo Lee
چکیده

The ever-growing amount of data stored in digital databases raises the question of how to organize and extract useful knowledge. This paper outlines some current developments in the domains of dimensionality reduction, manifold learning, and topological learning. Several aspects are dealt with, ranging from novel algorithmic approaches to their realworld applications. The issue of quality assessment is also considered and progress in quantitive as well as visual crieria is reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Advances in Manifold Learning

Manifold learning has recently gained a lot of interest by machine learning practitioners. Here we provide a mathematically rigorous treatment of some of the techniques in unsupervised learning in context of manifolds. We will study the problems of dimension reduction and density estimation and present some recent results in terms of fast convergence rates when the data lie on a manifold.

متن کامل

Image feature optimization based on nonlinear dimensionality reduction

Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We ...

متن کامل

Algorithms for manifold learning

Manifold learning is a popular recent approach to nonlinear dimensionality reduction. Algorithms for this task are based on the idea that the dimensionality of many data sets is only artificially high; though each data point consists of perhaps thousands of features, it may be described as a function of only a few underlying parameters. That is, the data points are actually samples from a low-d...

متن کامل

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

Growing Locally Linear Embedding for Manifold Learning

Locally linear embedding is an effective nonlinear dimensionality reduction method for exploring the intrinsic characteristics of high dimensional data. This paper proposes a new manifold learning method, which is based on locally linear embedding and growing neural gas and is termed growing locally linear embedding (GLLE). GLLE overcomes the major limitations of the original locally linear emb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010